首页> 外文OA文献 >Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms
【2h】

Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms

机译:改进的算法,利用快速内同态对椭圆曲线进行高效算术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In most algorithms involving elliptic curves, the most expensive part consists in computing multiples of points. This paper investigates how to extend the tau-adic expansion from Koblitz curves to a larger class of curves defined over a prime field having an efficiently-computable endomorphism phi in order to perform an efficient point multiplication with efficiency similar to Solinas' approach presented at CRYPTO 197. Furthermore, many elliptic curve cryptosystems require the computation of k(0)P + k(1)Q. Following the work of Solinas on the Joint Sparse Form, we introduce the notion of phi-Joint Sparse Form which combines the advantages of a phi-expansion with the additional speedup of the Joint Sparse Form. We also present an efficient algorithm to obtain the phi-Joint Sparse Form. Then, the double exponentiation can be done using the phi endomorphism instead of doubling, resulting in an average of l applications of phi and l/2 additions, where l is the size of the k(i)'s. This results in an important speed-up when the computation of phi is particularly effective, as in the case of Koblitz curves.
机译:在大多数涉及椭圆曲线的算法中,最昂贵的部分在于计算点的倍数。本文研究如何将tau-adic展开从Koblitz曲线扩展到在具有有效可算内同形phi的素数场上定义的更大的曲线类别,以便执行与CRYPTO上提出的Solinas方法类似的高效点乘法197.此外,许多椭圆曲线密码系统需要计算k(0)P + k(1)Q。继Solinas在联合稀疏形式上的工作之后,我们介绍了phi-Joint稀疏形式的概念,该概念结合了phi扩展的优点和联合稀疏形式的额外加速。我们还提出了一种有效的算法来获得phi-Joint稀疏形式。然后,可以使用phi内同态而不是加倍来进行双幂运算,从而得到phi的1次应用和1/2次加法的平均值,其中l是k(i)的大小。当phi的计算特别有效时(如Koblitz曲线的情况),这会导致重要的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号